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Abstract

This work describes a software tool intended for the evaluation of spectral
portraits of nonsymmetric matrices. This requires to compute the 2-norm of
the matrix (A — 2I)71, for points z in a discretized rtegion of the complex
plane. In order to estimate this 2-norm, i.e, the smallest singular value of
(A — zI), a Lanczos procedure is applied to the operator (A — 2I)*(A — z1),
which corresponds to a normal equation formulation. The importance and
fundamentals of spectral portraits are first reviewed. Then, we describe the
sequence of operations required for their evaluation, including the estimation
of the smallest singular value by means of an eigenproblem approach, possible
strategies to speed up the computation and implementation details. Next, we
give a wide range of study cases as a way to result a critical analysis of the
methodology employed and to define guide-lines for future activities. Finally, a
user’s guide is given, with a description of the required input and output files.
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1 Introduction

Eigenvalue computations are very important for the study of the stability of physical
problems. However, in finite precision arithmetic, some problems may occur in the
computation of eigenvalues related with highly nonnormal operators.

Tests performed with matrices for which the departure from normality is parametrized,
show that the QR method converges to eigenvalues far away from the exact solutions.
For some problems in physics, for instance, one must be sure that all the eigenval-
ues have a negative real part. If the associated operator is nonnormal, the real part
of some computed eigenvalues may become positive. How can one interpret such
behaviour? On the other hand, Trefethen has shown that in hydrodynamics, the util-
isation of perturbed operators may lead, in several cases, to results matching those
of physical experiments.

Therefore, the question is : How does a perturbation affect an eigenvalue?

A possible answer is given by the condition number, which can be computed for sim-
ple eigenvalues, but in the case of defective multiple eigenvalues only an upper bound
exists. Therefore, the classical tools turn out to be inefficient.

In order to overcome this inefficiency, one should examine the eigenvalues of A + AA
and not only those of A. Thus, let us define an e-pseudoeigenvalue and an e-
pseudospectrum of A :

e )\ is an e-pseudoeigenvalue of A if

A is an eigenvalue of A 4+ E with || E|2 < ¢]|A]|2

e The e-pseudospectrum of A is defined by

A(A) = {z €; z is an e—pseudoeigenvalue of A}

We will see in the next section that, for a fixed ¢, the border of A.(A) can be defined
as {z €C; | AlfI(A = 21) 7'l = 2}

Godunov (Godunov (1991)) calls the graphical representation of
z — logio([| All2/l(A — 21)7"|2)

the spectral portrait of A.

Unlike the condition number, which is a first order estimation and allows the study
of the singularity only in a circle with radius tending to 0 (asymptotic behaviour),
the spectral portrait allows the study of the influence of the singularity in a larger
topological neighbourhood.



2 Notations

x* 1s the conjugate transpose vector of . A* is the conjugate transpose matrix of A.
Throughout this document, we use the following notations :

A
sp(A)

For the sake of simplicity, we shall write Q;, Tj

real nonsymmetric matrix

spectrum of A

dimension of A

lower left point of the discretized space

higher right point of the discretized space

number of discretization points on the real axis
number of discretization points on the complex axis
threshold for convergence (backward error)

number of required eigenpairs

maximal number of steps

point in the discretized complex plane

hermitian matrix defined as (A — z1)*(A — zI)
singular values of (A — zI)

eigenvalues of H,(z)

eigenvectors of H,(z)

Lanczos basis at j* step

vectors of the Lanczos basis at ;¥ step
tridiagonal matrix defined as T'(z); = Q(z)
eigenvectors of T'(z);

eigenvalues of T'(z);

THA(2)Q(2);

when no confusion is possible.

3 Spectral portrait description

By means of Turing’s theorem, one can show that {z € €’; z is an eigenvalue
of A+ AA; ||[AA|2 < ¢||A|lz} is equivalent to {z € @; |[(A — zI)7Y|2]|Allz > %}
The proof can be found in Trefethen.

instead of Q(z);, T(z);, ...

Therefore, to compute a spectral portrait, the main problem consists in the evaluation

of

z— (A =27y for 2 €C . (1)

where B is an n X n matrix

1
We I’GCELH that HBH2 - O-malf(B) ELIld HB_IHQ = Umzn(B)

and {o;(B)}", its singular values. We denote 0,,;,(B) (resp. 0paz(B)) the smallest



(resp. the largest) singular value of B.

Therefore, the equation (1) can be rewritten as :

s — o = A= =D, )

which requires the determination of the smallest singular value of a matrix.

The evaluation of (2) can be performed in different ways. We present three of
them, namely singular value decomposition (SVD), Normal Equation method and
Augmented Matrix method, and give their respective condition numbers C'N(svd),

C N(ne) and CN(am) . Since the SVD method will be used as a reference technique,

we compare its conditioning with the other two.

a) Singular Value Decomposition :

This method (see Golub and Van Loan (1989)) is very reliable but computation-
ally expensive. The condition number of this method is denoted by C'N(svd) and
is

1812

CN(svd) = m.

Proof :

CN(svd) = lim X
( ) e——0 Umzn(B) HABHQ

but (see Golub and Van Loan (1989, page 428))
|omin(B + AB) — 0min(B)| < 0max(AB) = [|[AB|;

and

1

= ||B7',
thus
| Bl|2

CN(svd) = || B7||2||Bl2 = Tmin(B)

b) Normal Equation method :

We compute 0,,;,(B) in the following way :



We call this method, the "Normal Equation method”, in analogy with the least
squares problem min||Az — b|| which can be reformulated as a linear system A*Az =
A*b.

The computation of a singular value is replaced by the computation of an eigenvalue
of B*B. Using a projection method allows us to work with larger matrices. The
drawback is that the condition number, denoted now C'N(ne), is such that

CN(ne) ~ (CN(svd))* .

Proof :

We can find in Chatelin (1988) that

_ 1B*Blz[lz-[l2[l]l2

N —
ONe) = e (B°B)] °

where = (resp. z.) is the right (resp. left) eigenvector of B*B corresponding to
Amin(B*B). Since B*B is hermitian, we have z. = z and |[z||; = 1.

Thus, we can write :

IB*Bll. . __|IBIIz
[Amin(B*B)| ~ (0min(B))

CN(ne) = 5= (C'N(svd))* .

¢) Augmented Matrix method :

This method is based on the use of (lg* 103) denoted by B,, to compute the singular

values of B.

Indeed, recalling that sp(B*B) = {(o1(B))?, (02(B))?, ..., (0.(B))*}, one can write
sp(Ba) = {=0u(B),....,—01(B), +01(B), ..., +o.(B)}

Thus, to determine || B!, we have to compute |oy(B)| which is an eigenvalue of the
matrix B,.

This method works with a matrix whose size is twice as large as the correspond-
ing matrices of the other two methods. However, we can benefit from the block
strucure of B, and its hermitian property.

Furthermore, it can be checked that for the third condition number denoted C'N(am),

CN(am) <V2y/n CN(svd) .



Proof :

The condition number of the eigenvalue A, (B,) = |o1(B)] is

_ 11Balla [l

ONtem) = B el

where @ (resp. x.) is the right (resp. left) eigenvector of B, corresponding to Ay (B,)
Since B, is hermitian, we have z, = z and ||z||; = 1.

Thus, we can write

_ 1Ball2
|01(Ba)|

CN(am)

but
I1Ballz = >_ 05 + 2205 = I Bllk + 1B7]IF = 2| Bl -
7] 7]

Because || B||r < v/n||B||z, one can write || B,]|2 < \/E\/EHBHQ and

V2Vl Bl _ V2y/llBll:
ONEm) S TR = omin(B)

< \/E\/ﬁ CN(svd) .

Therefore, we have shown that the Normal Equation method may have a strong ill
conditioning. However, in this report, we develop this method as a first approach
for spectral portrait evaluations in order to enlight its numerical difficulties. This
will justify the examination of the Augmented Matrix method, which will be fully
described in a forthcoming report.

The method chosen to compute A [(A — 21)*(A — z1)] is based on the Lanczos
method, which is very appropriate for computing the extreme eigenvalues of hermi-
tian matrices.

Common implementations of the Lanczos algorithm require the user to provide the
matrix-vector product. Here this product is (A — zI)*(A — z1)z .

Thus, our work consists in :

o discretizing the complex plane



e computing, for each point z
z— ¢(z) = logio(|[All2l|(A = 21)7"]]2)

= 10g10[Mmaz(A* A Ain (A — 21)*(A — 21))]"2 .

Because the variations of ||[(A — zI)7!||2 in the neighbourhood of an eigenvalue are
extremely stiff, the level curves of = — ||Al|2||(A — zI)!||2 corresponding to a uni-
form scale are not very informative. To circumvent this difficulty, we can use rather
an exponential scale, which amounts to a uniform scale for z — ¢(z).

4 Spectral portrait computation

In this section we examine the sequence of operations required for the evaluation of a
spectral portrait. First we define the variables that we use in our computation. Then
we list the steps to determine the spectral portrait, as well as the algorithm used
to estimate the required eigenvalues. Finally, we present the strategies and versions
implemented to improve the computational performance.

4.1 Spectral portrait determination

The basic steps required for the determination of the spectral portrait are described
below

Step 1. Define a region of the complex plane by z; and z,.

e Step 2. Discretize the region by xmesh and ymesh.

Step 3. For each point z of the discretized region, compute |[(A — zI)™!||2.

Step 4. Graphical processing using Matlab.

In order to define the region to be studied, we recall that each eigenvalue A of A
satisfies |A| < ||A|l2. Thus, for a global analysis of the spectrum, the region under
study must contain more than the disk (0, ||Al|2) because of the possible diffusion of
some eigenvalues outside the spectrum (see Figure 6).

The discretized region is used as shown in Figure 1. The motivation of this choice
will become clear in section 3.3.4 .

The computation of ¢(z) requires the determination of A,q.(A*A) and

Amin((A — zI)*(A — zI)), which will be examined in the next section.
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Figure 1: The spectral portrait computational path.

4.2 Eigenvalue computation

The technique used for the computation of the eigenvalues (i.e. A, and Ayqz) is
based on a Lanczos method applied to H,,(z) = (A—zI)*(A—=z1). We use the subrou-
tine HLDRVS, which is described in Marques (1994). Some important characteristics
of this code are given below.

4.2.1 Generalities

The unique routine, HLDRVS sets values for control parameters, computes some eigen-
values of H,(z) (usually the extreme ones) and, if required, the associated eigenvec-
tors. The algorithm used by HLDRVS requires the multiplication of a vector by the
matrix H,(z), until the convergence for the prescribed number of solutions is reached.
However, every time a matrix-vector multiplication has to be performed, the control
is returned to the user (reverse communication strategy). Thus, the matrix H,(z)
does not have to be passed as an argument.

4.2.2 Method

The algorithm used by HLDRVS is based on the Lanczos method, in combination with
a modified partial reorthogonalization strategy.

The basic idea consists in the generation of a Krylov basis of vectors Q; = [q¢1, ..., ¢;],
with j < n, such that the projection of H,(z) into @), leads to a reduced problem, i.e,

Qi H(2)Q; = T;

where 7} is a symmetric tridiagonal matrix.

Assuming that (6,y) is an exact eigensolution of the reduced problem, (6,Q;y) is
an approximate solution of the original one. We define as (5\,%) the pair (6,Q;y)
computed in finite arithmetic precision.

10



The algorithm is summarized below

1. Initialization:

set go =0 and #; =0
set ¢1 # 0 so that ¢f¢g1 =1

2. Lanczos steps:

for j=1,2..

a) rj — Hn(2)g;

ri =1 —qi15;
c)

)
Qj — q] rj
d) rj s T1r;— QJO'/J
)

o

e)
f)
g) if required orthogonahze g; and ¢;+1 against the vectors of ();_4
h) insert ¢; into Q);, ;-1 «— By, tj—1,; « Bi, t;; — «

i) solve the reduced problem T]y;C = ypby

j ) check ne, the number of elgenpalrs for which

[Ha(2)E = Aillz = 1851195 |2 < tol [[Ha(2)]]2
If nc > p, exit.

3. Compute the eigenvector approximations (related with nc):

Tr = Qjyx

4.2.3 Stopping criterion

The stopping criterion is based on the backward error analysis. The backward error
related to the i"* computed eigenpair ()\;, Z;) is given by

[Hn(2) % = Al
IH(2)]]2

The numerator can be computed using information provided by the Lanczos code!.

n(z); =

Indeed, at the 7' step of the algorithm, we have :

[ Ho(2)E = Nidills = Bialyt”|

. (3)
Iprovided that % > machine precision . See Bennani and Braconnier (1993b).
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where 3;,, is the normalizing factor associated with the (j 4+ 1)** Lanczos vector

and yz(])

reduced problem.
Since H,(z) is hermitian, |H,(z)|l2 = Amaz(Hn(2)), which is also obtained during

the computation because Lanczos usually approaches both minimal and maximal

is the last component of the eigenvector related to the i** eigenvalue of the

eigenvalues.

4.2.4 Versions and strategies

We have implemented two versions, which differ in the choice of ¢;, the first eigen-
vector of the Lanczos basis.

e For the general version, at each point we use as starting vector
an=—(1,1, ...1)".

e For the previous point version, if we define z;4; as the point after z; in the
discretization, we use as starting vector

g1 = Z1(2)/[|E: ()]

where #1(z;) is the eigenvector associated with the smallest eigenvalue of H,,(z;).

The previous point version was implemented in order to reduce the basis size, required
for the convergence to A,.;,.

Although it seems very attractive, this approach is not always reliable, as we will see
in the examples. In addition, both versions use a restarting strategy : when the basis
size reaches the maximal number of steps allowed, m, and the convergence of A,
was not reached, the Lanczos code is restarted taking

o (2)
R EAGITE

as starting vector.

4.2.5 Implementation details

It should be noted that the sparsity of the matrix is not taken into account. As
it can be seen in the User’s Guide section, portrait can deal with matrices from
the Harwell-Boeing collection(Duff, Grimes, and Lewis (1992)). For the input of the
matrices, we use the subroutine readmt from the SPARSKIT library (Saad (1993))
but, as mentioned before, such matrices are stored as dense.

On the other hand, the spectral portraits for the Harwell-Boeing matrices are com-
puted using only the previous point version.

12



5 Numerical results

In this section, we will first validate the proposed techniques on matrices already
treated in Carpraux, Erhel, and Sadkane (1993), namely Godunov and HOR131 from
the Harwell-Boeing collection. Then, we will use two other matrices to show the

different problems that one can meet using the code. Finally, we give a comparison
in terms of the CPU time required by our techniques and the SVD .

5.1

Description of the Figures

Before presenting the numerical results, in Table 1 we list the characteristics of the
problems examined and the corresponding figures.

Parameters
Figure | Matrix | Size Method All methods | Normal Equation method
Mesh m | p tol

2 Godunov 7 SVD 256 x 256

3 Godunov 7 General 256 x 256 5 3 10712
4 Godunov 7 Previous Point 256 x 256 4 2 10~12
5 HORI131 | 434 | Harwell-Boeing | 200 x 50 100 | 45 107
6 La Rose 10 SVD 256 x 256

7 La Rose 10 General 256 x 256 7 5 10715
8 La Rose 10 | Previous Point 256 x 256 6 4 10~1°
9 Tolosa 135 SVD 256 x 256

10 Tolosa 135 General 128 x 128 80 | 55 10-12
11 Tolosa 135 | Previous Point 256 x 256 50 | 25 10715
12 Tolosa 135 | Previous Point 100 x 100 80 | 60 10715
13 Tolosa 135 General 10 x 10 70 | 50 10715
14 Tolosa 135 | Previous Point 10 x 10 70 | 50 10715

Table 1: Description of the Figures.
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5.2 Matrices studied

5.2.1 Godunov matrix

This matrix was introduced by Godunov and its spectral portrait was previously

studied in Carpraux, Erhel, and Sadkane (1993). The matrix is defined by

-2 2 0 0 0 0 0
0o -3 10 3 3 3 0
0 o 2 15 3 3 0
A=1 0 0 0 0 15 3 0
0 0o 0 0 3 10 O
0 o 0 0 0 =2 25
0 o 0 o0 0 0 =3

so that, the eigenvalues correspond to {—3,—2,0,2,3} with —3 and —2 of multiplicity
2.

An analysis of the Figures 2, 3 and 4 shows a good behaviour of both previous point
and general versions in comparison with the SVD method.

The neighbourhood of the eigenvalues —3 and —2 can be considered as ill conditionned
because of the collective behaviour observed in this region.

5.2.2 Harwell-Boeing matrix

The matrix HOR131, of dimension 434, has 4710 entries and is related with a flow
network problem. Its spectral portrait was studied in Carpraux, Erhel, and Sad-
kane (1993).

As we can see in Figure 5, the spectrum of HORI131 can be as stable because the
largest value on the scale of the spectral portrait is moderate. Therefore, perturba-
tions less than or equal to 107° do not lead to significant changes in its eigenvalues.

5.2.3 La Rose matrix

The matrix called La Rose is the companion matrix associated with the polynomial

P(z) = (z —1)*(xz — 2)*(z — 3)*(z — 4).

14



It is defined by

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

A= 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

—864 4968 —12492 18086 —16703 10290 —4287 1194 —-213 22

so that its spectrum has one simple eigenvalue, equal to 4, and three defective eigen-
values of multiplicity 3 : 1,2 and 3 respectively. Considering these multiplicities, the
spectrum is difficult to compute.

The analysis of the figures 6, 7 and 8 shows a good general evaluation of the spectral
portrait obtained with both general and previous point versions in comparison with
the SVD method.

We can observe a collective behaviour mainly in the neighbourhood of the eigenvalues
2 and 3.

However, the general and previous point versions present a pigmentation around those
eigenvalues that does not appear with the SVD method. Some preliminary tests with
the Augmented Matrix strategy have not shown this phenomenon, which seems to be
related with the condition number of the Normal Equation approach. For example,
when using the expression for CN(¢) introduced in section 3 for the point (2.01,0)
and (2.0001,0), we get condition numbers of order 10°® and 10**, respectively.

The next application will illustrate the problems we can meet with the previous
point version.

5.2.4 Tolosal35 matrix

This matrix has dimension 135 and was provided by engineers from Aerospatiale, who
wanted to compute the eigenvalues with largest imaginary part. The matrix is asso-
ciated with a flutter analysis problem (Braconnier, Chatelin, and Dunyach (1995)).

An examination of the results shows an agreement between the general version, Fig-
ure 10 and the SVD method, Figure 9. However, the previous point version does not
show a large part of the spectrum, as can be seen in Figure 11.

This problem might be related to : a) the size of the basis generated by the Lanc-
zos algorithm, b) a starting vector orthogonal to the eigenvector associated with the
smallest eigenvalue.

15



The spectral portrait shown in Figure 12 was also computed using the previous point
version, but with a basis size larger than the one for Figure 11. We obtain a bet-
ter representation of the spectrum, although we can observe vertical perturbations.
These perturbations can be explained by focussing on a small region of the plane,
as shown in Figures 13 and 14 obtained by computed the spectral portrait with a
10 x 10 mesh. Considering the spectral portrait computational path (see Figure 1),
the first five points are correct with the previous point version. For the subsequent
points, the computation is not accurate.

This problem is related with the starting vector supplied to the Lanczos algorithm.
Actually, for the point z; = (=50, 170), we find with both general and previous point
versions A (Hn(21)) = 4.3539 x 1072, Taking as starting vector for the next point
7y = (—50,174) the eigenvector associated with 4.3539 x 1072, the previous point
version obtains A, (H,(22)) = 3.2072 x 1072, which is in fact the second eigenvalue
of H,(z2), the smallest being 3.1225 x 1072. The convergence could not be reached
with the basis size we used, because the starting vector is orthogonal to the eigen-
vector associated with the eigenvalue 3.1225 x 1072, This phenomenon may continue
for consecutive points and independently of the characteristics of the matrix (nonnor-
mality, norm ...). Therefore, the previous point version is not a reliable strategy for
the spectral portrait evaluation. On the other hand, the general version uses always
the starting vector u/||ul|2, where u = ((1,0),(1,0),...,(1,0)), and does not suffer
from the aforementioned problem.
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5.3 Figures

-4 -3 -2 -1 0 1 2 3 4

Figure 2: Godunov matrix. SVD method.

Figure 3: Godunov matrix. General version.
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10

Figure 4: Godunov matrix. Previous Point version.

1 35

2.5

15

0.5

-0.2
-0.5 0 0.5 1

Figure 5: HOR131 matrix. Previous Point version.
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14
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12

11

10

Figure 6: La Rose matrix. SVD method.

15
14
13
12
11

10

Figure 7: La Rose matrix. General version.
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Figure 8: La Rose matrix. Previous Point version.

5.5

4.5

-300 -200 -100 0 100 200

Figure 9: Tolosa matrix. SVD method.
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5.5

4.5

-300 -200 -100 0 100 200

Figure 10: Tolosa matrix. General version.

5.5

4.5

0
-300 -200 -100 0 100 200

Figure 11:  Tolosa matrix. Previous Point version.
Orthogonality problem. m = 50, p = 25
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-80 -60 -40 -20 0

Figure 12: Tolosa matrix. Previous Point version. Orthogo-
nality problem. m = 80, p = 60

190 T

185 T 166

180

175

170

165

160

155

150
-50 -40 -30 -20 -10

o

Figure 13: Tolosa matrix. General version. Zoom in the region

[=50, 0] x [150, 190]. Mesh 10 x 10.
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"] 62

150
=50 -40 -30 =20 -10 0

Figure 14: Tolosa matrix. Previous Point version. Orthog-
onality problem. Zoom in the region [—50,0] x [150,190].
Mesh 10 x 10.

5.4 About the CPU time

For all applications, the CPU time required for the spectral portrait evaluation with
the previous point version has been shown to be less than that required with the SVD
method. However, this can not be taken into account because of the problem verified
with the convergence. On the other hand, the general version, which is reliable, is
more CPU time consuming than the SVD method for some applications. This is due
to the generally slower convergence for the first eigenvalue and consequently larger
basis are generated by the eigensolver.

6 Conclusion

This work describes an alternative approach to the SVD method for the evaluation
of the spectral portrait. We have used a Lanczos based code to compute the smallest
eigenvalue of a matrix (A — z/)*(A — zI), for distinct values of z.

We have developed two strategies :

a) a previous point one, which takes into account the eigenvector associated with
the smallest eigenvalue computed on the point z previously examined,
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b) a general one, which does not consider any information from the previously
examined point z.

The previous point version has been shown to be faster than the SVD method. How-
ever, it is not reliable since it can yield to wrong results due to the orthogonality
of eigenvectors on adjacent points. Conversely, the general version leads to results
which are similar to the ones obtained by the SVD method.

However, for some applications, the general version is more CPU time consuming than
the SVD method. Moreover, due to the squared conditioning of the Normal Equation
approach, a sort of pigmentation can be found around singular points, corresponding
to points where the eigenvalue is computed with a poor accuracy.

Therefore, it seems that an Augmented Matrix version approach would be more ef-
ficient for spectral portrait evaluations. Such an approach is better conditioned and
can also benefit from the use of a Lanczos technique. Some experiments with the Aug-
mented Matrix are currently being performed and will be discussed in forthcoming
reports.
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Appendix

A

Description of the code

The main subprogram for the spectral portrait evaluation is portrait.f, which has

the following characteristics :

B

B.1

It defines work arrays whose dimensions are specified by the parameters NMAX
and MAXW. Such parameters can be redefined by the user in order to match a
particular application, as follows :

NMAX must be equal to or greater than n, the dimension of the matrix.

MAXW corresponds to the workspace required by the eigenvalue computation
code.

It reads the variables that define the type of the matrix to be studied, the
strategy to be used and the mesh on the complex plane. It also reads the
entries of the matrix.

It calls the subroutine readHB, which is an interface for READMT from SPARSKIT
(see Saad (1993)), for the input of matrices from the Harwell-Boeing collection.

It defines the strategies to be used by calling either maillage or maillagePP
which correspond to the general and previous point version, respectively. These
subroutines are interfaces for the eigenvalue computation package. However, in
any case, maillage is first used for the computation of ||A]|2.

User’s guide

INPUT files

This section describes the input files required by the spectral portrait evaluation code,

which are the followings

STRATEGY : This file contains the choice for the version to be used. We recall
that the Harwell-Boeing version only works with the previous point strategy.
See example below.

H/B matrix? O for no, 1 for y

0

Previous Point version? 0 for no, 1 for yes
1

If H/B matrix give the name (*_rua)

no name
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e PARAMETER : This file contains the mesh parameters and the control values for
the eigenvalue package. The bounds for the real part are given by xmin and
xmax while the bounds for the imaginary part are given by ymin and ymax. The
partitioning of the region is defined by xmesh and ymesh.

Give xmin

-4.0

Give xmax

4.0

Give ymin

-1.0

Give ymax

1.0

Give xmesh

256

Give ymesh

256

Give the precision(backward error)
1.e-15

Give the size of the matrix

7

Give the maximum number of step

4

Give the number of required eigenpairs
2

Maximum number of steps for the 1-st point or restarsting (PP version)
6

Number of required eigenpairs for the 1-st point or restarsting (PP version)
4

e MATRIX : When the matrix does not belong to the Harwell-Boeing collection, it
must be specified in this file, column by column. See example below.

-2.0

O O O O O O
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O O O
O O O

10.0

W O O O O ON
O O O O O O O

15.0

W W o O O O O
O O O O O O O

15.0

W W o O o Ww
O O O O O O O

-2.0

O O O O
O O O O O O

25.0
-3.0

B.2 OUTPUT files

This section describes the QOUTPUT files which are

e OUTPUT1 : gives the real part of each point of the mesh.
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e OUTPUT2 : gives the imaginary part of each point of the mesh.

e OUTPUT3 : gives the value of ||A|[2]|(A — 2I)7!||2 for each point of the mesh,
associated with OUTPUT1 and OUTPUT2.

These files will be used by the Matlab post-processing, in order to visualize the spectral
portrait.

B.3 Matlab post-processing

The spectral portrait will be visualized using the Matlab routine dessin.m. After
reading the OUTPUT files, this routine uses the intrinsic Matlab functions, pcolor
and colorbar, and the subroutines forme.mand reforme.m.
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